Graph Theory

Euler's formula for planar graphs

R. Inkulu http://www.iitg.ac.in/rinkulu/

(Euler's formula for planar graphs) 1 / 14

(ロ) (图) (통) (통) - 통 - 9 Q Q*

Euler's formula

Let G be a connected planar simple graph with *e* edges and *v* vertices. Also, let *f* be the number of regions in a plane graph corresponding to *G*. Then $f - e + v = 2.$

proof by induction on number of edges while fixing *n*

A corollary to Euler's formula

If a connected planar simple graph has e edges and v vertices, where $v \geq 3$, then *e* $\leq 3v - 6$.

 $2e = \sum_{r \in f}$ number of edges bounding *r* every face, including the outer face is bounded with at least 3 edges: hence, 2*e* ≥ 3*f* special case: 2 edges bound a face whenever there is a spanning path on three vertices

Hence, K_5 is non-planar.

Another corollary to Euler's formula

If a connected planar simple graph has *e* edges and *v* vertices with $v \geq 3$ and no circuits of length three, then $e \leq 2v - 4$.

now $2e > 4f$

Hence, $K_{3,3}$ is non-planar.

Yet another corollary to Euler's formula

If G is a connected planar simple graph, then G has a vertex of degree not exceeding five.

if $\delta(G) \geq 6$, then $\sum_{v} deg(v) = 2e$ contradicts $e \leq 3v - 6$

Kuratowski's theorem

a subgraph of Petersen graph (shown right) is homeomorphic to *K*3,³

A graph is *nonplanar* if and only if it contains a subgraph *homeomorphic* to K_3 ₃ or K_5 .

Let $G(V, E)$ be a graph. An *elementary subdivision* on G involves obtaining another graph G' by removing an edge $e = (u, v) \in E$ and adding a new vertex w together with edges (u, w) and (w, v) . A *series reduction* operation is precisely the inverse transformation of elementary subdivison that is applied to vertices of degree two.

Two graphs *G'* and *G''* are said to be *homemorphic* if they can be obtained from the same graph by a sequence of elementary subdivisions. Equivalently, G' and G'' are homeomorphic if they are isomorphic or can be reduced to isomorophic graphs by a sequence of series reductions.

— not proved in class

Observation

• *G* is planar iff all minors of *G* are planar. Hence, the family of simple planar graphs is minor closed.

Wagner's theorem

A finite graph is planar iff it does not have K_5 or $K_{3,3}$ as a minor. (That is, $\{K_5, K_{3,3}\}\$ is the obstruction set of the family of planar graphs.)¹

— not proved in class

¹The celebrated *Robertson & Seymour theorem*: Every minor closed graph family has a finite obstruction set. $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A$ OQ

(Euler's formula for planar graphs) 8 / 14

Drawing planar graphs

• Let *G* be planar and let π be a plane drawing of *G*. Also, let *F* be an inner face of π . Then there exists a plane drawing π' of G that has the verices of *F* defining the outer face of π' .

> rotate the sphere so that the face that correspond to F in the stereographic projection σ_N of G becomes north pole *N* before projecting back with σ_N^{-1}

• The *skeleton* of a convex polytope *P* is planar.

for a point *p* interior to *P* and a sphere *S* with center *p* so that *S* contains *P*, choose a face of the central projection of *P* onto *S*, say π , as north pole *N* and stereographically project π onto the plane with w.r.t. *N*

- *Wagner '36; Fary '48; Stein '51*: Every planar graph can be drawn with line segments. — not proved
- *Koebe '36*: Every planar graph can be represented as the contract graph of disks. — not proved

(Euler's formula for planar graphs) 9 / 14

Outline

1 [Applications](#page-9-0)

(Euler's formula for planar graphs) 10 / 14

Number of regular polyhedra

There are only five regular polyhedra.²

- every regular polyhedra is convex; hence, has a planar embedding
- noting that $pf = 2e$, $qv = 2e$: $\frac{1}{p} + \frac{1}{q} = \frac{1}{2} + \frac{1}{e}$
- hence, the only combinations possible are:

 ${3, 3}$: $e = 6, f = 4, v = 4$ (tetrahedron) $\{3, 4\}$: $e = 12$, $f = 8$, $v = 6$ (octahedron) ${3, 5}$: $e = 30, f = 20, v = 12$ (icosahedron) ${4, 3}$: $e = 12, f = 6, v = 8$ (cube) ${5, 3}$: $e = 30, f = 12, v = 20$ (dodecahedron)

every other *p* and *q* combination yield a meaningless value for *e*

²A polygon that is both equilateral and equviangular is called *regular*. A (convex) polyhedron is said to be a *regular polyhedron* if all its faces are equal regular polygons and the same number of faces meet at a vertex. A regular polyhderon having *p* sided regular polygons as faces with *[q](#page-9-0)* faces meeting at every vertex is [d](#page-11-0)e[n](#page-9-0)oted by $\{p, q\}$ -[po](#page-11-0)[ly](#page-9-0)[he](#page-10-0)d[ro](#page-8-0)n[.](#page-13-0) OQ (Euler's formula for planar graphs) 11 / 14

Pick's theorem

The area *A*(*Q*) of any (not necessarily convex) polygon $Q \subseteq R^2$ with integral vertices is given by $A(Q) = n_{int} + \frac{1}{2}$ $\frac{1}{2}n_{bd} - 1$ where n_{int} and n_{bd} are the number of integral points in the interior and on the boundary of *Q* respectively.

- area of every elementary triangle³ with the vertices from a unit grid has area $\frac{1}{2}$
- triangulate the Q with n_{int} and n_{bd} such that every triangle is elementary: $A(Q) = \frac{1}{2}(f-1)$ $further, 3(f-1) = 2e_{int} + e_{bd}$ i.e., $f = 2(e - f) - e_{bd} + 3$

and $e_{bd} = n_{bd}$

³ a convex polygon is *elementary* if its vertices are from the lattice and the polygon does not contain any further lattice points (Euler's formula for planar graphs) 12 / 14

Crossing number

Let $G(V, E)$ be a connected simple graph. The *crossing number* of $G, cr(G)$, is the smallest number of crossings among all drawings of $G⁴$, where crossings of more than two edges in one point are not allowed. Then $cr(G) \geq m - 3n + 6.$

while treating the crossings as nodes with edges defined appropriately,

 $m + 2cr(G) \leq 3(n + cr(G)) - 6$

⁴ note that in such a minimal drawing, the following situations are ruled out: (i) no edge can cross itself; [\(ii](#page-11-0)) edges with a common endvertex cannot cross; (iii[\) n](#page-13-0)[o](#page-13-0) [tw](#page-0-0)o [e](#page-8-0)[d](#page-9-0)[ges](#page-13-0) [c](#page-8-0)[r](#page-9-0)[oss](#page-13-0) tw[ice](#page-13-0) $\circ \circ \circ$ (Euler's formula for planar graphs) 13 / 14

Five color theorem

Every planar graph is 5-colorable.⁵

inductive step: include a vertex whose degree does not exceed five

 v_2 and v_4 lie in diferent faces of cycle

for a vertex *v* of degree five, let $H = G - v$; let H_{13} (resp. H_{24}) be the subgraph of *H* induced by vertices colored 1 or 3 (resp. 2 or 4)

either v_1 , v_3 belong to distinct components of H_{13}

or, v_2 , v_4 belong to distinct components of H_{24}

⁵in fact, *Appel and Haken '76* proved that every planar graph is four colorable but the proof has close to 2000 cases and several of those are proved using computer simulations; on the other hand, *Grotzsch's theorem* states that every planar graph not containing a triangle is 3-colorable

(Euler's formula for planar graphs) 14 / 14